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1. SUMMARY OF PROGRESS TO DATE

Original Statement of Work

Establish the existence of discontinuous (relay) minimax controls.

(Largely accomplished; proof sketched in proposal still seems

correct, though it is planned to elaborate the proof in a more

expository manner. )

Find sufficient conditions for uniqueness of minimax controls.
(Resolved: a counter-example negates the possibility of unique-
ness for the (strict) "Mayer minimax problem, '’ while the criterion

of controllability also establishes uniqueness of (approximating)

"Lagrangian minimax controls' and the ''sub-optimal' variants

thereof discussed in the past few Progress Reports.)

Establish sufficient conditions for existence of a minimax control
for the one-parameter trade-off case.

(Definitively completed. See 15 Sei)tember 1964 Progress

Report. )

Devélop the theory of higher (than quadratic) order Liapunov

functions ...

——

{Largely resolved; see Appendix D below) ... and establish tech-

niques for computing minimax control laws,

(Apparently i‘eso’ived, in principle — that is, one demonstrably

- possible, though costly, computational technique has been

developed, and an alternative, seemingly far more economical
technique is now being developed; these are the tensorial and

eigenexpansion techniques; see Sections 2 and 4 below.)

Find reasonable characterizations for the class of disturbances.
(Completed; see 15 August 1964 Report, wherein it is proved that

in the (a, ¢, ¢) model the worst wind has a ""bang-bang' acceleration

time-history, while in the (2,4, ¢) model, the worst wind speed
has a ''zig-zag'' time history; the numbers characterizing the
"worst allowable winds' are quite readily computable from the

Liapunov functions already derived in Item 4 preceding.)

1
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2. DEVELOPMENTS WITHIN PAST MONTH

Appendices A to D essentially contain detailed derivations of
theorems and computer algorithms previously reported to MSFC without
proof. It is felt that Appendix C is sufficiently polished to be submitted

to a journal such as, e.g., the SIAM Journal on Control; the canonical

forms described in Appendix C are fundamental to all of the work done
by Hughes (e.g., both of the previously submitted papers done under

this NASA Contract which were recently accepted for presentation at the
1965 JACC, depend heavily on these canonical forms). Similarly,
Appendix D represents the first draft of a paper whose content is regarded
as finalized but whose expository style will be improved; however, the
material contained in Appendix D is the basis for the contractor's esti-
mate that the item on "Higher Order Liapunov Functions' specified in

the original MSFC Statement of Work is now largely accomplished and
well in hand. Likewise, Appendix B contains a detailed proof of the

algorithm for computing rational Transfer Matrices:

Gi(s) = (sI-A)!

for
x= Ax,  x({s) = G(s) x°,

The matrix G(s) has been referred to in all preceding Progress Reports.
Finally, Appendix A describes the now operational Hughes computer
program for automatically synthesizing closed-loop control systems to
have arbitrarily pre-specified poles. The effort in preparing these

papers has constituted the preponderance of work during the past month;
however, all of these results have previously been mentioned or projected,

and so do not fall into the category of ''new developments, "

The principal unanticipated developments in work during the past

month are, briefly, as follows:

*It is suggested that mastery of Appendix C will facilitate any
detailed study of the reports submitted by Hughes to date.




i)

ii)

A radical reduction has been achieved in the computing

effort necessary to solve the partial differential equation
Ax - grad ¢ = -4,

where and are positive-semidefinite homogeneous
algebraic forms of degree 2v(v = 1,2,3,...) with
given and ¢ to be found. Instead of relying on tensor
algebra (in terms of which the problem has a costly
solution) as hitherto planned, attention has been turned

to the theory of eigenfunction expansions, which has

yielded a much more economtical solution;

A major part of the Hughes theory of '"bang - coast -
bang,' ''time - optimal,' and ""Lagrangian minimax"

nonlinear feedback control laws, as hitherto reported,

has rested on the theory of a certain (n-1) first integrals

Ty Ty eee 3 Tp_y and an isochrone T all given ex-
plicitly in prior reports. A theoretical relationship

between ¢, ..., qnand the eigenfuxiction theory just

l’
mentioned has been found which it is hoped may lead to
simpler mechanization of the nonlinear feedback control

laws;

What seems at this time tg,be potentially a minor "break-
through' in the ''Lagrangian minimax' approach has

been discdvered, in the form of an explicit '"closed-form"
solution of the Hamilton-Jacobi equation in a neighborhood
of the intersection of the origin with a hypersurface of

sin&ular solutions,

Items i) and iii) will be discussed in more detail in Section 4.

|
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3. WORK PLANNED FOR NEXT MONTH

i) Mr. Abichandani will report the relationship between MSFC's
"drift minimum control principle, " and what Hughes has previously
called ""dominant-pole synthesis, ' "mean-square dominant pole synthe-

sis, " and "ultra-minimax control., "

ii) Dr. Bass and Dr. Gura will work on a detailed report on
A Nonlinear Canonical Form for Controllable Systems, which will de-

L}

velop fully the numerous facts about "integrals' and "isochrones"
which are basic to much of the work already reported and even more

basic to work planned for the remaining five months,

iii) Dr. Bass and Dr. Webber will re-write Appendix D of the
present report, including new material but aiming chiefly at greater

clarity.

iv) Dr. Bass and Dr. Webber will initiate a complete report on

Higher Order Liapunov Functions fe specially practical solution of

Ax - grad @ = -¥, where & and ¥ are sums of positive-definite homo-
geneous algebraic multinomials), covering both the tensor algebraic
and eigenfunction expansion approaches, New geometrical and also

numaerically computable descriptions of the state-space domains of '

controllability (stability), and of the allowable external disturbances

PR 4

v) Mr. Woodhull will continue to document the digital computer

program for automatic synthesis of stable and/or optimal linear, linear-

saturating, and bang-bang systems (unified into a single new theory as
previously reported). It is planned ultimately to present MSFC not only
with a complete documentation of Hughes work, but with a FORTRAN
Program which should be compatible with the existing MSFC computing

facilities.
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4. DESCRIPTION OF ALL WORK PERFORMED DURING MONTH

Basically, the work performed during the past month is covered in

Appendices A - D,

However, there are two important items not fully covered which

will be mentioned here,.

The '""Remark' section which concludes Appendix D sketches the
new method to which Hughes has recently turned in solving the basic

equation

Kx-gradtb,v:-s?) , (v=1,2,3,...)

2v

where A is a stability matrix and where d)zv(x) and v v(x) are non-negative

2

definite algebraic forms homogeneous in Xyy X ., x_of degree 2.
n

2)
As an example, consider the rigid-body problem for the n = 5

simplification previously reported in detail. For v = { the forms 62 and

4;2 are quadratic; setting éz = x+ Bx and ¥, = x-Cx, one recovers the

2
familiar matricial equation

BA + A*B = -C, (B = B¥>0, C = C*>0),

the solution of which for the elements Bi of B involves inverting a matrix

k
of dimension

N = (1/2)n{n+t) = (1/2)5 - 6 = 15.

Now for v = 2, the form d)z and 4’2 are guartic, and determined by

coefficient tensors having no fewer than

N =70

distinct elements,

Since the inversion of 70-dimensional matrices is costly, an
alternative approach was discovered. This involves finding N = 70

functionally independent complex nonnegative definite eigenfunctions

5
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ei(x), such that, for (complex) eigenvalues N with Re I ,\il <0,

Kx'gradei:)\.e., (i=1,2,...,N)

11

If any given real quartic nonnegative definite form <, can be expanded as

1

N
) = 2yl (x),
1=1
then the desired solution ¢>4 is given by
N
b (x) = ?;‘1 (v; /N8, (x).

However, the N = 70 eigenfunctions can be systematically generated from

only
N =5
[o] .

""basic' eigenfunctions, as explained by analogy with an example in
Appendix D. It appears that development of this new approach will effect
a great economy in numerical implementation of design by higher order

Liapunov functions.

~ A second unexpected result, extending Appendix D, is the following.

Consider the system
x = Ax + ay, y=gox+,
where the states are restricted so that
b = 1/2 [ell |
while the coefficient of linear feedback is so chosen that the system

x = Ax +a(g-x) = (A +ag™)x = Ax
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is stable. Impose on v the requirement that
\#l < 1‘/’Z

A , .
(whence l*" < l;\l 1‘ Ial <_”_*,“ =0 (1, 2) = (1.2) « (1.72) = 1), and,
under this constraint, minimize the (Lagrangian minimax) performance
criterion.

+ oo
o)
o = ¥(x)dt, = (1/2v) v,
o v= 2
where the abZV(x) are as above. This problem has an exact solution

A : .
near x = 0, namely, when o # 0, it is given by

QO

A
W o= -Sgn{:a-gradQ},Q 32: (I/Zv)d’zv
v=2

where the functions d>2v are computed from the given -szby precisely

the tensorial or eigenexpansion techniques discussed immediately above.
The meaning for control systems of this novel type of control

law {linear plus additive bang-bang) will be studied more deeply in the

coming month.
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5. FORECAST OF POSSIBILITY OF ULTIMATE
ACCOMPLISHMENT OF PROJECT

There is no doubt in the minds of contracting personnel that all
five items of the original MSFC Statement of Work regarding Contract
NAS8-11421 will be fulfilled within the agreed time and cost limitations.
As mentioned in more detail in discussion of the Statement of Work
given in previous Progress Reports, and as amplified by a few references
in the present Report, very substantial progress on all five items has
already been reported. The work actually reported to date, we submit,
is now a very favorably inclined indicator of the possible ultimate degree

of success of this project.

However, Hughes takes this occasion to initiate a discussion of the
radical improvement in degree of usefulness to NASA-MSFC of the
Final Report of this present project (with no delay whatsoever in the
scheduled Date of Compietiun of the project) if the scope of the project

were extended to include adequate computer simulation on numerically

realistic examples of the Minimax Attitude Stabilization Laws and design
algorithms. Purely analvtical and concepntual derivation has been, and
will continue to be, intensively pursued under Contract NAS8-11421 as

it presently stands.

The original Statement of Work on NAS8-11421 comprises five
items, all of which involve strictly conceptual mathematical research.
It is hereby submitted that this aspect of the work has progressed ex-
tremely well, and that there can be little doubt of a Final Report in
July 1965 which will be judged favorably in terms of initial requirements

and expectations.

It should be recalled that the "Minimax Control Problem, ' although
formulated in highly sophisticated and abstract mathematical terms in
the original MSFC Request for Proposals, is designed to strengthen the

national capability to handle a very practical and specific engineering

problem : in particular, optimal design of large aeroballistic launch

vehicle attitude stabilization systems.
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Most theories developed to date by Hughes, while quite complete

as theories, reduce the most important questions (e.g., "how?', "how
much better?', '"'what cost?', "what is trade-off of cost versus per-

formance?", etc.) to purely quantitative questions which can only be
answered by putting specific numbers into the general mathematical

formulas derived to date.

As promised in the Hughes proposal, the contractor has kept

constantly in mind the effective compatibility of all mathematical

equations and algorithms on which work has been concentrated. Further-
more, Hughes has voluntarily gone considerably beyond this promise,
and in fact has donated to this NASA project a very substantial amount

of numerical analysis and programming labor (available from other
Hughes-supported activities). What is submitted are impressive results
(see Section 4 and Appendix A) concerning the practicality and utility of
the. theoretical optimization algorithms being derived under NAS3-11421.
Appendix A of the present Monthly Progress Report covers about one-

third of the presently operational Automatic Design Procedure based

upon theoretical work performed under the present NASA contract. The
remaining two-thirds of the Procedure will be reported, again with

numerical examples, in the forthcoming Progress Report.

Hughes has recently organized an Advanced Studies Section to
enhance .its performance of projects similar to NAS8-11421. It can be
demonstrated readily that this section has the capability to program for
computer simulations, and to perform numerically realistic simulations
of all of the remaining theoretical design algorithms derived under
NASB-11421. Such work would increase, by many-fold, the usefulness
to NASA-MSFC of this project without any detraction from the theoretical

aspects and without any delay in the scheduled Project Completion and

Final Report in June-July 1965. This would, of course, necessitate
either an agreed extension of the Scope of Work of the present contract,
or else funding by a parallel, supplemental contract. Hughes suggests
that either approach would materially hasten the date on which the
advanced results of modern control theory research will be available for

a genuine practical contribution to the NASA-MSFC mission.

9
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6. OTHER INFORMATION PERTINENT TO EVALUATION
OF CONTRACTOR'S PROGRESS

1} The Guidance and Controls Division of FHughes Aircraft
Company, within its Advanced Systems Laboratery, has recently orga-

nized an Advanced Studies Section to facilitate work of the type currently

being performed under this contract. Section Head is Dr. R. DBass.
The personnel of this section, all available for work on NAS3-11421,

are:

Dr. R. Bass, Senior Scientist
Dr. 1. Horowitz, Senior Scientist
Dr. R. Webber

Dr. 1. Gura

Mr. K. Abichandani, Staff Engineer; carndidate
Dr. Engineering, UCLA

Mr, L. Schwartz, candidate Dr. Engineering, UCLA
Mr. J. Woodhull, M.S.

ii) The Guidance and Controls Division of Hughes is pleased to
announce that Mr. Lawrence Schwartz (formerly of the Hughes Space
Systems Division) has joined the new Advanced Studies Section and will
be available during the coming months for consultation, theoretical-tn-

vestigation, and computer simulation of minimax booster control laws.

Mr. Schwartz, both for his recent publications,-and for his
Technical Monitoring of numerous Air Force contracts in the fields of
System Optimization, Advanced Control Techniques, etc. while with the
Flight Control Laboratory (Dayton, Ohio, 1961-1963) is well known to
technical personnel of NASA concerned with advancing the state-of-the-

art in stabilization and controls.

10
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The digital comiputer routines intended to mechanize Parts I, 11
and IIl of Reterence 1 will henceforth be referred to by their Fortran
language names; CNTRLL, FILTER and CNTRIL2, respectively.
Given the system matrix, A, the actuator vector, a, and an arbitrary
choice of n closed loop poles, CNTRLI computes the control vector, g,
plus certain other data necessary as inputs to FILTER., CNTRL2 is
similar to CNTRLI, except that a performance index matrix, C, is
specified rather than arbitrary closed loop poles. CNTRL2 then
computes the required poles, which are used instead of the arbitrary
poles of CNTRL!. FILTER, using data from ecither CNTRL! or
CNTRL2, computes the parameters of a simiple multiport filter to
approximate the desired result.

All three parts have been completed for fourth order systems.
In preparation of the compre¢hensive report on the digital program,

the three main programs have been modified to handle a {ifth order

system. All subroutines have been made to handle any order system,

so that further modifications to change the order will be made in main
programs only. Even the main programs are being made as general

as possible, unless by so doing the printing format would be difficult

"to interpret. Notation and statement order is being put into better

form and comments are being added so that the program listings may
be easily understood by anyone familiar with Fortran. .
Both CNTRLI! and FILTER are com.plctely self-checking.
CNTRL2 is self-checking with the exception of the subroutine that
computes the optimal roots. In an effért to check that portion also,

a small program has been written which builds the 2n X 2n matrix

A aa*

C -A¥

then solves for the coefficients of the characteristic equation and
finds the 2n roots. The roots in the left half-plane are the desired

optimal roots and may be compared to those produced by the more




direct formula (Equation (4) of Reference 1). This alternate program
may be incorporated into CNTRL2, to be used or skipped as desired.

- It would ordinarily be skipped, since it requires considerably more
computer time, as mentioned previously.

In the December Progress Report it was stated that roundofi
error was not a problem for the fourth order example used. The
Souriau-Frame algorithm is checked by computing one extra matrix,
S ,, then noting that all elements are zcro. Roundoff error is a
problem to the extent that these elements are not zero. The initial
fourth order example used did produce 2 S o whose elements were all
zero so no problems were suspected. When the fifth order Saturn
model was tried, some of the elements were very large, indicating
that the algorithm might have failed. Hand calculations showed that
the coefficient of s° (ao) was off in the third place. The other o's were

. better. This result does not conflict with the conclusions of Forsythe
and Straus (Reference 2), who found that error may be expected to be

larger with larger n, and also is directly affected by the ratio of the

used did provide an "ill-conditioned' matrix (large ratio of targest to
smallest eigenvalue). Further effort w:ll be made to determine the serious-
ness of this error when applied to realistic problems. If any difficulty
should actuilly exist, double precision arithmetic will be used.
Included in this appendix are listings of the CNTRLI] main

-pmogram, plus the subroutines called by CNTRL1, namely ALPHAS,
SYNTHI, MATPW2 and MATMPY. Results using Saturn data are
also given. The notation in the listings will be changed somewhat
before completing the comprehensive report, as will some of the
printing format. The sensor matrix and the closed loop system poles
were chosen arbitrarily to demonstrate the program. The order used

' magnitudes of the largest to the smallest eigenvalue.. The Saturn data
[ for the state variables is
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AU
X3 = &
x5 = b
xy = B
s = B

Reference 1

Reference 2

Bass, R. W,, and I. Gura, "High Order System Design
via State Space Consideraticns, " prepared for Marshall
Space Flight Center, NASA ) Huntsville, Alabama.
Accepted for presentation at 1703 JACC,

Forsythe, G. E., and Louise W, Straus, '"The Souriau -
Frame Characteristic Equation Algurithm on a Digital
Computer, ' J. Math. Phys. 34, pp. 152-156 (1955).




C LITTLE~G MAIN PROGRAM (5TH ORDIER) (CnTRL )

C REQUIRES SUBROUTINES ALPHASeMATMUPY yMATP YR SYNTHIL

Cl{i*ill{l*{llQliili&iriilI*&Gilﬂ*“%&*Q&Iﬁlﬁhklilii**filiiilii{#lil’{fi.

. ODIMENSICON A(S595) sALTLIS s 1)y ALPHA(S) sALTLTRIL1+5)9ATRIS5s51 ,ATP (5,5},
2 AAT(S5+61sAATI(L1s5)sA8(5 1) +A5(545) AT ILEE(5+5) sALPHA2{6) »AHPLA(S)
3 sAPROX(S5) 9 AHPLAZ(H) sA2(545) 3A31555) 4APPROX(1D)+sATRPARI9+5+5)
G BLTLIS»1)sCLROCT IS ) 20510161 +03IR01(61sDSTARIS,5) sELINYV(5951)

& S GLTLIS» 1) sOLTILTRILI DI INLAXIE)sOLROCTIS I +ROOTI(S)+sROWISs 1)

6 S{595)95A(5+5)

Cif**ﬁi*.#iilwl*l&‘&%*iﬁiéIklillwli*é%illﬁl*i#*i*#F**lllii!*l}lll*l*l’*l
COMPLEX OLROOT,CLRICT yAPRUXsR00T4DSIRDI

c‘.iiiilfi&*ﬁliﬁliﬁﬁllé"w&i AR A REEEREEEEAEEEEEER LI EETEZ SRS RS SRS RS SRR S X 3

‘ N=5

: NP=N+1

b

|

. A

| REAO(l’Z)((A‘I‘J)vJ=19N);I=1.N)
| READ( T2V (ALTLII 1) al=1e™)
\ 2 FORMAT({SF10,2)
31 READ(lel) (RTOITUIVe!l=zlseN)
& 1 FORMAT(8F12,0)
c"*.iifﬂ*lik*’**liiifﬁ.*l**i"‘!lii*lll&*i*iiﬁf}i.iii{“’l*“*i**'."*‘
ROOTRE=2REAL(ROOT( 1IN
IF(ROOTRESER 123465674} GO TD 50
c.'**i}lf**".’ii{}*l*?Q*”l**if’i‘iiii".“**ill".i{.'**i*”'*""'il*{
WRITE(Z2e3) ((AllsJd)edz=leNIsli=1,N)
- 3 FORMAT(1H1s35X+284 CONTROL SYNTHESIS PROGRAM 1 ////95XsFH A-MATRIX
2 /7 (10Xe5F 15,677 )
WRITE(2e4) (ALTL(Isl)si=1,N)
4 FORMAT(//5Xsl6H ACTUATOR VECTCR /7 S5130XeF10el//3777 )
* DO 101 I=1,.N
101 APROX{I)1=¢(Des0s)
10 FORMAT(1~1)

C‘*’Q’!*.*i*i!i*#iii#f#!‘i}J*HQ&tﬁl#SllilQi'llllik&{i.l**!i*l‘i&&'ﬂlﬁ&ﬂ’

l WRITE(2+11)

11 FORMAT(1HLl»244 35-MATRICES OF CPEN LOOP 7/177)
701l CALL ALPHASINsASALTLIALPHA»Ss INDEX+5AsR0ON 1 oELINVSENORM)
WRITE(2+,101
631 DO 123 I=1,N
Jl= N-I+2
103 AHPLA(JL1)=ALPHA(])
AHPLA(1) =140
CALL ROOTIL(NSAHPLASCLROOT APROXsM)
WRITE(Z295INP s (ALPHA( 1) sI1=1sNP1 2 (0OLRONT (11 s]l=214N)
5 FORMAT(/5Xs34H OPEN LOOP CrHARACTERISTIC EQUATION 77/
2 10Xs4SH COEFFICIENTS OF ASCENDING POWERS OF S ( O TOsl2e2H )7/
3 /1CXs6E18Be5//7/7/5X943H ROOTS OF OPEN LOORP CHARACTERISTIC EQUATION
& /77 30Xe5H REAL1SXs1CH IMAGINARY/Z /120X 92E20e5//) )
WRITE(2+10)
WRITE(2+6) ((ELINVIIsJ)sJd=lsN)sl=1sN)
6 FORMAT({31H ELINV (USED IN FILTER PROGRAMY //7/5(10Xs5E20e6//)s1H1)
Cli*ii}i!iiiif!i%i***!#i**iifilii*ki****#4iiii}*l*iiiiiiiI*ll**{li*iil**
CALL POLCO(Ns1.0+RO0T$DSIRDI)
DO 203 Ilu=m]l,sNP
1=N+2-1J
M 203 DSIRD(I)=REALIDSIRDI(TIJY)
DO 107 I=1eN
107 ALTLTRIlsI)=ALTL(Is1)
CALL SYNTHLINsASALPHAYDSIROYALTLTRIATRATPSAATLAAT] +BLANKsBLTL
2 ABI»ATRPWR,,GLTLWNP»A2,A3,DSTAR)
WRITE(2s7) ((DSTAR(I9J)sJd=1sN)pl=1sN)

-y

A-4




7 FORMAT (/7 /7723 CONTROLLASILITY MATRIX /77 5010X+5E204677)191441)
R A R R N T L )
DO 179 I=1sN
109 GUTLTR(141)=GLTLIT,1)
CALL MATMPY(ALTL Mo SLTLUTR, Ny 19AGH
DO 111 I=1lsN
DO 111 J=1sN
111 ATILOC Tl sJ)zAL]9J)*A0LT 43)
WRITE(2+8) ((ATILODECTIs ) wl=1leMN)oJd=1N)
8 FORMAT(/// 47+ A-TILOE=-TRANSPCSES (ATT USZIC IN FILTER PROGRAM)
2 /7 SU10X+5E2046// 1y 1H1)
R Ny e Y LR AR R R R R Ry Y T I S22 2 TR TR N R
WRITE(2,12)
12 FORMAT(1H1,258H S-MATRICES OF CLOSED LOD2 ///77)
CALL ALPHASIN ATILDE sALTLSALPHAZ2 »S, INDEX 52 4RCHs1sELINVIENORM)
WRITE(2+10)
DO 204 1=1sNP
J2=N~-1+2
204 AHPLA2(J2)=ALPHA2(T)
CALL ROOTI(NSJAHPLAZ2,CLROOT,00T M)
WRITE(24131(ROOT(L) oIzl aNI»{CLROCTULI o I=1sN)o(GLTL(I o1} =1sN}
13 FORMAT(1H1+20Xs36H CONTROL SYNTHESIS PROGRAM 1 (CCONTD) 7277
1 5X+26H DESIRED CLOSED LOCP ROQTS///2C%xs3rt RES17Xe3H [My//
9 S5(15Xs2E2045/7/)
2 5X»36H RESULTING CLOSED LCOP ROOTS (CHECK)/// 30Xs5H REALS10Xs
3 10H IMAGINARY//5(20X+2E20¢5//7)//5%X932H CONTROL VECTOR (TZRMS | TH
4RU N)Y 777 S5(30XsEl5.6/7) )
GO T0 2
CRERBBEBANBERRE BRI AR SRR RERBRB SRR I IR L AR R LR ERRRCRER R R AR R R B RRL RRSHRAR
30 WRITE(2+51)
51 FORMAT(1H1)
CALL Duwup
END
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ALP
2

2

51
12
22

13
25
16
405
31

32
42

43

44

HAS (ORDER 1 79 19)

SUBRCUTINE ALPHAZINSASALTLIALPHI IS, INDEXsSASROWIMPRNTS,

ELINV, FHORM)

DIMENSION A(NsNY 9 ALTLINS L) yALPFAIN) oS INSN) o INDEXIN) s SA(NN)»

ROWINs L) sELINVHWN)
GO T3 (142)sMPONTS
I1PRNT =]
IF(N.GT.ZQ) IDQMT=1
CONTINUE
DO 3 I=1,.N
DO 3 J=1lsN
SA(l+J)=N,
DO &4 (-‘-19N
SA(Ks»K)=1.
DO 42 J=1.N
NN=N=-J+1
CALL MATMPY (A3NsSA» NN S
TRACE=Q.
DO 6 K=1oN
TRACE= TRACE + S({K.K)
ALPHA{NN)= ~TRACE/FLOAT( W)
DO 8 K=1N
S{KeK)I=S(KeK)+ ALPHA (NN}
INDEX{NN)=NN=-1
BC 10 I=1sN
DO 10 JJxlsN

} SA(Iedd)= S(1sdJ)

GO TO (51+4095),MPRNTS
ARITEL12512)INDEX(NN)
FORMAT(///5X 7+ INDEX=  [3//)
DD 2% K=1+1P3NT

SMIN=(K=11%10 +1

MAXZK#]1D

JMAX=MIND (Ns™MAX)

WRITEt(2,13) JMIN, JMAX
FORMAT(S5X 84 COLUMNS 13454 THRULII//)
DO 75 I=1eN

ARITE(2916) (S{[ e JM) 9 JU=JMIN,MAX)
FORMAT (10X s120E12.4/)

CONTINUE
IFLINDEX(NN))&2542531

CALL MATMPY(SsNsALTL s 1sNsRCW)
INDEXN=INDEX (NN)

DO 32 I=1sN

ELINVIINDEXNsI)= ROW(Iv1)
CONTINUE

ALPHA(N+1)=1.0

INDFX{N+1)= N

DO 43 [=1sN

ELINVINs )= ALTL(Ls1)
ENORM=0,

DO 44 1=1sN

DO 44 J=1N
ENORM=ENORM+ARS{S(9J))
RETURN .

END




“SUBROUTINE SYNTHL (NsAZALPHALZCSIRDZALTLTRWATRWATP, AATWAATL»8LTLL
2 BLTLIARZATRPYRWGLTLWNPyAI AT NSTAR)

DIMENSION ALNs NI s ALPAHAINP I 933 {RIIL I sALTLTRILI o™ ) oATRINSNISATPININ)
2 sAATININPYs AATLI( Il s SLTLE Nl s TLINSL) AR INL Y sATZE NI I Vo NN »

3 A2 (INsNIsAZ{NGNTsOSTAR (4N

10

11

DO 1 I=1,N

DO 1 J=1eN

ATREI«J)=ALUN])

CALL MATPARI NS ATRP A2 $A3,ATRO 4R
DO 7 K=1,N

LSYNL11=K

DO 2 l=14MN

DO 2 J=1,N

ATPII s J)=ATRPYR( T, Ja¥ !

CALL MATMPY(ALTLTRy L sATP s NsAATL)
00 7 I=1sN

DSTAR(KsI )= AATI(1ls1)
AAT(KsI)= AATI (1.1

DN 8 =10

AATUI s N+1)= D,

AAT(NeN+1)= 1,

CALL MATS(AAT8LTL »MNsl)

DO 9 I=1eN

GLTL(I»1)=0.

D0 11 K=1N

LSYN12=X

DO 10 I=1sN

D0 10 J=leN

ATP UL s J)=ATRP(R(TeJex)

CALL MATMPY(ATP+Ne3LTLsleNsAR)
20 1) =1y

GLTL (Ll )= OLTLUI 11+ (ALPHAIKI=OSIRDIKYII® As(lal)

RETURN

END
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500

SUBROUTINFE MATD QN (NeAl4A25A33APWR)
DIMENSION AL(NesM1eA2 (NaN)sAT NN 3 APWR IN NN
DO 2 I=1,,N

DN 2 J=1,MN

A2 TeJ)= N

DO 3 I=14N

A2(1sl)=140C

DO 4 [=1,N

DO 4 J=1M

APWR( T sJdsl)= A2(1,40)

DO B K=2,N

LMATP] =K

CALL MATMPY (ALl sMNsA24 NN A3)

DO 8 I=1,sN

DO 8 J=1 N

APWRI 1K) = A2(1,J)

A2{led)Y = A3(] )

RETURN

END

SUBROUTINE MATMPY (AZNR SR (NCWNs O
DIMENSION A{MN2,% 1 93 (MNeNCIeCINRGNC)
DO 8500 I=1sNR

LMTuP1=1

DG 500 K=1eNC

LMTMP2 =K

ClleX)=0aD

DO 590 J=1sN

ClIskK)z CUlIsKI+ALTsJIRB( JsK)
RETURN

END




L aias . 3 ——

%X * Ax+ ay

»
CONTROL SYNTHESIS PROGRAM |
' -
- A-wATRIZ LA
-0.032200 -0.019400 1.00€000 -3.021160 0.
) 0.’ 9. 1.0000C0 0. 0. T
-0.069300 0. 0. -0.474000 o.
L - 0T TR [ PO - PO 0. THI000038 T
0.762900 0. 0. -1760.562000 3.360000
acruarce vecrce [ a)
a.
0. - o
_ .. 0. —
- °. -
1.0 i
. o _ —
) .
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S-MATRICES CF OPEM LC

TB-MATZICES)

INCEXs & (s

COLUMNS " 1 Thry
-0.3360E Q1
’0:6“)05‘01

N
0.7620€ oc

" INOEXs )
T COLUMNS 1 TRARU
0.1760€ 04
~0.6930E-01
0.2328€-00

_..0.7620€ 00
0.2980E-07

INDEX= 2

N TUTTY S U Y T

G.5198€-04

. 0.2328€-00

~0.1224E 03

———— e _02980€-07
~0.1516E~04

fwoExs |

. = Bo)

arP

S

-0.1940£-01 C(C.1CCCE &1 -D.211CE-01
-J.33246 01 (.1000€ 71 4.

0. ~C.1328E 0] -(.47642E-00

0. . Ce o -0.3328E 01

0. Qe ~C.17L0€ 04
g T e

0.6518E-01 -C.3379F 21 -N.4231E-00
0.1763€ G& -C.3328E Gl - .474C¢-00
0.1344E-02 CL.1760E 0% 2.1579€ O}
[ Se -5.3891€-01

<0, 1473€-31 J.T620€ 23 -C.5870€ 02

k]

~0.3415€ 02 U.L1781lE 04 0.1602¢ 01

0.5647€ 02 C.1760E 2% <C.1579t 01
“0.451T7E-Q02 C.S67CE 02 .46336-01
“0.1478E-01 C.7529€ °0 -9.23%2f-0C
-0. “Celd?9E-21 -C.12238 0)

COLUMS 1 THRU

“0.1213E-0) ~C.1016E-0% -~0.34156 22 -0.3CA%-~01
~0.1224E 03 Q.1226E 03 L.S6T0F 02 OC.~638E-01
~0.32616€-05 0.23T4E 81 ~C.1213E-21 3.2085E-04s
e =B 1A08€-08 =0 . ~C.16T8E-D1 CL.ZISTE-OL
“0.6379E-0¢ O0.9537E-06 -U.1306E~0s 0.2573¢ 0L
INDEXe O

COLUMNS 1 TwAY

~0.4333€~01
L ~0.3816€-05
0.8478€-03
~0.8379E~04
0.1723€-01

]

0.2353€-03 -C.1213E-01 -0.3756€-03
~0e4374E-01 -0C.1213E-01 0J.2685€E-04
Q.7042E-07 ~C.4374E-91 -0.9030€E-02
0.9537€-06 -J.1806E-04 0.1500e-00
0.2430€E-05 ~0.44695¢€~04 ~0.3285€ 02

A-10

0.

2.

o.
_0.1CGOE 01

9.3220€-01

~0.2110&-01
=0.47408-00
0.3220€-01
0.6329€~01

~0.4740€E-00
~0.4740€£-00
~0.1380€-01

G.6929€-01
~0.1302E~02

Q.9196E~02
~Q.1380€-01
0.4663E-0%
-0.1342€8-02
0.3199€-02

0.4612€-0%
04 4663E-05
~0.102LE-05
0.5199€-02
-0.3001€-01

\
(Tuesz ELEVENTS uON-2ERO

[
\

DUE TOo QOUNDOFF £2ROR
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7= p=R e gy eRR RN, e pevvem M weem e D asinc BN cnase Ty

OPEN LOQP CHARACTERISTIC EQUATION

COEFFICIENTS OF ASCENDING PUWERS OF S { O TO 6 ) {ats:]
~0.24176€ 01 0.12236€ 03 3.56470€ 02 0.17605¢ 04 -0.33278€ 01

ROOTS OF CPEN LOOP CHARACTERISTIC EQUATION [ €ICENVALUES)
- - REAL  [WMAGINARY ]
0.19477€-01 0.

RATIO QF LARGEST TO

0.15000t 01

~0.25843¢~ . TE~

0.23843¢-01 0.26427€-C0 SMALLEST ELGENVALUE X 2100
~0.25843e~0} -0.26427€-C0O

0.16800€ 21 Q.41925€ C2

0.16800€ 01} ~0.4192%¢ C2

A-11
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SN OER $  ERY R e s

b

ELINY (USED IN FILTER PRCGRAM)

0.919580E-02
~0.414007E-00

L =0.211000£-01
0.

0.

-0.138006€-01

~J.474L00E-00

0.

0.

o.

C.466313E-05

~C.1343CC6E-01

-0.4740G0E =00
0.
0.
L 4
A-12

“0.136230€-¢2

3.692992€-C1
0.322)32E-01
0.100030€ 91

J.

0.519943 -2
~0.13423 -7
0./03929020-21
04322000t -.1

0.1000CCL 01



e

_——

CONTRCLLABILITY MaATRIX

0. 0.
G. 0.
-0.2110006¢-01 0.

-0.544217¢ 20 ~0.476C20€-00

0.393439€ 02 -3.159113€ 01

Ece SYSTEM T2 Ba (CNTICL-AB.E

Q.

0.
-0.4740Q0E-00
-0.159114E 01

0.829103€ 03

THIS

J.

0.100300¢ 01
0.336300c 01
-0.174921& 04

~0.117326t 05

O MUST o AANE

0.100000¢
0.336000L
~0.17692ic
-0.117926¢

T 0.303986¢

LON-IE20 D




o gn— — sy o  peeey ]

o

v

A ]

A-TILOE-TRANSPOSE (ATT USED IS FILTER PRAGAAM)

-0.32220308-01
=J.194300¢-01
0.1C0000k 21
=0.211000L-21

0.

Gl

'Pk

=0.69300%€-01
C.
J.
-2.474500E-00

0.

A-14

J.

2.103300€

ol

-J.80 064t
De8163247
0.368615¢

=3.112075:

C T -0.131951¢



-

S-MATRICES Lf CLOSEC

‘BMATR CEL

INDEXe &

COLUMNS L Tway
0.1320t 0}
0.

-0.6930F-0]
0.
~0.8098€ 09

INDEXes 3

CCLUMAS 1 THRY
0.112t1¢ 2%
~J.0330k-21
~0.9144F 21
-0.6098t 239
-0.25%28 27

INOEL> 2

COLUMNS 1 THay
Q.1747€ 238
~0.9L144E€ N1
Q.3839E 09
-0.2%%2€ 07
-0.%8650E 08

INCEXs ]

COLUMNS | THRU
2.3872€ 09
0.3839E 09

~0.1278E 04

~0.56%2€ 08
0.8469€ 08

INOEXs O

COLUMNS 1 THRU
-0.2881lE 04
~0.1278E 24
~0.4888€ C5
0.8449E 08
~0.1772€ 11

Lese

14 Y

e Bl

5

~0e.l134CE-C1  T.12C2%
N.1320t 03 L.L1CCCHF
0. L. 1320€
O. Ce
V.M168E 39  L.3686E
5

=3.2560€ 01  I.11313¢
J.1121% 0% [.1132CC
ColdeuE-C2 Cl.112it
PEED XTIV B EE T
J.4271k 28 L .HlsdE

5

~0.1724F 08 -(.T6606E
0.3952€ 36 (.1121F
~0. 33728 139 -.. 1709
D.42018 08 C.3148¢
C.5658€ 28 .L.4201€

5

~0.387%¢ OF% -L.1T724¢
=D.3834¢ C9 -{,1709E

-Q.1872¢8 C8 (.}TIQE
S.9%654E O0” [.4201E
“0.3%41E Q8 (.8164E
S
J.2115E 06 J.4574E
0.1076€ 04 L..3712F
0.3619¢ CS L.7650F
~0.9441E 08 (.8164¢

0.2382€ {1l -C.3321€

01
21
03

03
3
35

PR

cr

06
s
24
37

04

03
o8
c2
L]
27

Q2

03
o7
(o1

-C.2117%€-

C.

31

~0.e7«CE-2C

2.132C¢E
-3.1121¢E

~0.3259%¢

o3
0%

G

“0e4l6Cr-3C

3.5 256F
AR BT 3
-3.345Ck

=Y. 6254k
~0.6255E
~lel42ic
RPCER-ENS
-J.348138¢

0.1213
-2.1321E

~C 10088~

C.3215¢E
~N.1872¢

-0.317CE~
-0.1006€~

-0.1610€
J.15913¢t
~0.1806EF

A-15

2
21

Se

92
02
o1
ol
o7

a1
AR}
[} }
cl
08

ol
(¢} }
g1
04
06

-0.2110E-C1
J.

“CenT0lf-23
Se322l:-21

0.5921E-71

~Q.e7a08-20
“C.4T4le-73C
=3. 134701
De5321€-01
0.2734t-01

Q.31+7€-02
-G.1302E~31
Jeelnle~-Ne
J.2T73aE-01
J.6344E Q1

.-

-C.S646€-03
Jeoln3E~06
-J.1360r-01
Osb34esE OL
~0.9540€ Q)

E_.eMENTS LON- ZERD
20UNDOFF ERROR

TUE

To



CONTROL SYNTHESES PROGRAM | (fONTD)

DESIRED CLOSED LCO» RI0TS

RE i
-0.60002F 01 0.6COJCE 3t
-0.6CC0QE Q1 -0.6700QQ¢ CL
~0.40000€ 02 0.702032E €2
~0.4000CE 02 -0.7C32¢cE 22
~0.40000E 02 -0.

RESULTING CLOSED LCCP RCCTTIS (Cretx]

REAL ImMAG INARY
~0.60001t 01
-0.50301¢ 1
-0.39995%¢ Q2
-0.39995¢ 22

-0.39992F 02 -0.

CONTRCL VECTCR (TER®S 1 THRU N) 23)

-0.8098¢ 09

0.8168E 09

(ARB. vCARY NPUT CATA |

0.6C003E Q1

-0.60303E (1

0.70¢10¢8 32

-0.70010€ 92

(PRiMARY R&5..7 OF ChTZ.t §

0.3686E 08
"0 .944T€ 08

-0.13%3€ Q3

Te:S BLTSR S LSES To. coNmllE o
Tuk CLOSEZ LCOP RCOTS ABcLEe , ~6NCE
Tae CONTROL VECTOR 1S ALCU2ATE TC AT LzAaST

FOUR SiEWMFICANT BEXLURRS

A-16
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APPENDIX B
DERIVATION OF THE SOURIAU - FRAME - FADDEEV
ALGORITHM FOR COMPUTATION OF
MATRIX TRANSFER FUNCTIONS
L by .
R. W. Bass and I. Gura
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It has been demonstrated that the "Souriau - Frame®™ algorithm is very
useful for the calculation of determinants, matrix inverses, the cosfficients
of characteristic equations, and related quantities, Although the proof is
rather complicated, a detailed discussion can be useful to those who wish to
familiarizes themselves with the concepts involved.

Given the n x n matrix A, the characteristic equation is defined as

n
det (s - A) = Z R A(s) = 0 (1)
k=o

where I is the identity matrix, s is a scalar parameter and the @'s are to
be determined. In particular, it will be shown that the a's obey the

recursion relation

" (2a)

I+AS _ (2v)

B-1




The above (2b) can be condensed to

- 1
er -7 ¥ (Asn—r + l)
(2¢)
Sn—r = an—x‘ I+ Asn-r +1
Note that the Sn-r are n x n matrices.
It will alsoc be proved that
] (3)
=1 1
A™ = - & (3)
o
dot A = (-1)° a ()
n _
& sils

A(s)

. Pormula (5) is instrumental in system design and evaluation of time responses.

Let the roots of (1) be denoted by the quantities S5 35,-++ 8. Then

a(s) = (s - 8) (3-3,) oo (s-3) (6)

log A(s) = log (s - sl) + log (s - 32) + + log (s - sn) (7)

Differentiate with respect to s and obtain

dElogbfsi] - 8 {a(s ds -

ds A(s
(s - al)'l + (s - 32)-1 + ...+ (s - sn)-l (8)
Consider the i th term of (8)
1 1 1
= = —— 9
8-8 s [1-31/51 )
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Now l—_——s—i7; is the sum of the infinite geometric series Jgo (si/s)‘,

for lsi/sl < 1. Assume with no loss of generality for the purposes at

hand that lsl > nmax S - Then
1 1 _ .-l 3 =31
b s Do - D
Jo J=0

and (8) becames .

n * b n
d [a(s)]/ds J =31 Xl J -3-1
= 3 s = -] 3
A(s 12;1 J;O i jZo {= i

FPor convenience define the quantities GJ (3J=1,2,3,...) by

- o4
% 121' E!

Then

e n
afas)) _ A(,);o 0y 5751 - 5 o o ; 0y s~

ds =0

Let 4 =k- j-1 and eliminate J from (13). Notetha since 0S JS*® and 0Sk S n

the bounds on { must be given by ~ ®* £ L € r - 1, Then (13) becomes

n k-1

s - §

-1

(Is]> max s,)

n
2) a O SL + z ; a a s
L L& Tk okl &y & k kL

(10)

(11)

(12)

(13)

(1)



Consider the first set of terms in (14) and interchange the order of

sunmation by observing that 0 £ {4 £ k-1 S n-1 implies 0S4 S if

L+1<k<n
Thus
n k-1 n-1 n
Z; T Tty * (,Z ) T Oty (15)
k=0 =0 - =o =Utl .

Now let m = k-4-1 and replace k on the right side of (15) so that

k-1 n-1 n-4-1 L

n
{4
X'Zoakak'Lls -éz @ ] O ® (16)
o =0 mF=0
and (14) becomes
3 n-1 n-{-1 n -l ¢
dLla(s - 4
1 TR )
(17)
(Is]> max s,)
Alternatively, 2%2—‘-52] can be obtained directly from (1) by
'dif‘fereni ation:
C ] n n-1 - V
.;L%f_’l_ = X; k@ o1 - 20 (1) oy, ot (18)
=
where & = k-1. Then for |s| > max s
n-1 . n-1 n-4-1 . n -1 .
;o (1) Yy s = ZO Z o e %St Z Z * % ¢ 18 (19)
=0 IO ko &= - =




r&-—y

Equating like powers of s in (19) yields
n-4-1
(H) o, , = Z @ 1% (¢=0,1,2,...,n1)
1 =10)

Multiply (20) by - 1 and add n ¥, . to both sides

o n-4-1
Ex- (ul)] Tgpp = - m; am-’-{d»l am

Now replace ¢ by r = n-{-1

r

ra__ = 'm;an—r*m o (r=0,1,2,..., nl)

For r = n consider
n

A(s,) = a 8% = 0
i kz‘o k i

Sum over n such equations

n n
Zx Z " ’1k =0

i=l k=o

n n n

z ¥ Xa Tall Z % = O
k=0 i= k=o

n
nao = o k-;dkgk

and (22) is valid for O € r € n,

(20)

(21)

(22)

(23)

(24)

(25)

(26)



Using the fact that (see¢ Remark)

o = trAm
m

r
1 m
o o= o e
n-r r m;an_mtr(A)
or since tr A+ tr B = tr (A + B)
r

o b G[f o #])

Now replace m by V = n-r+m

' n
an-r-'%trA{; qvA\Lm—l}
r+l

Define the matrices So’ Sl""’ Sn

J-1
aJ A

P_u
[ ]
Kinel

n-r

and thus (2c) is proven.

by

(27)

(28)

(29)

(30)

(1)

(32)

(33)



Pormula (3) follows directly from this result

By definition (31)

n
s, = ; a A (34)
Q

Now by the Cayley - Hamilton Theorem (A matrix must satisfy its characteristic

equation) S, = 0. Then applying (32)

8, = a, I +AS, =0 (35)

-1

A L . (3)

o

as desired. (Note that S° = 0 can be used as a check on the ccaputation

of the Si.)
Letting 8 = 0 in equation (1) gives

det (- A) = (-1)7 a (36)

o
or

det (A) = (- 1) &; ) (1)




To derive (5) consider the identity

(sI)J - A"

Hence,

(s1)d -

Multiply (38) by @
Then,

= s"I +sj-1A + s‘j'2 A2+...+sA"

FLp 2020 L osadt oW

J

3-1 3-1
Z S N Z gI-1-k  ietl
k=0 k=0

-1
o T s z el

3-1
= (sI-4) ) il 4k
L

and sum over n such expressions where } =

n 3-1
- &(sI) - 8A = ( sI - A) JZO a, Z gJ-K-1 4k
=0

By the Cayley - Hamilton Theorem 4A = 0, and so

. n J-1
A(a) (SI - A)_l = a Z sJ"k"l Ak

Now let { = jJ~k and replace k

a(s) (sI - At 52 2} 1 1
=0 i=

-1, 3

(37)

(38)

O, 1’ LA J

(39)

(40)

(41)
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The order of summation in (41) can be interchanged since 1 € i < }§

and 0O J<€n imply 1 £ 3 <n if 1 <4i <n., Then

n
a(s) (s1 - &)% = szi-l jz Wt o
1= =i

and using (31)

(SI - A)-l - i=]

(42)

(43)



REMARK
Theorem:
n
m Z xm
r &7 = i cm
i=o
Proof: First prove
n
= A
NN XY
i=1

by mathematical induction. By (1)

. ' n-1 -
det (sI - A) s + ¥y + ...t a 0

From algebra -« is known to be the sum of the roots of (3i).

n—-1
hypothesis (2i) it must be true that

det (sI - A) = sn-(trA)sn_l+...+G° = 0

Now consider the general n+l x n+l zatrix

- a =
1,n+1

aZ,n+1

A' A .

2a+1,17 2n+1,2 *° 2n+1, 0l

e o

(11)

(21)

(31)

Then by

(41)

(51)
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Develop det (sI - A") by minors with respect to the bottom row and

obtain

(s - ah+l,n+l) (sn - (tr A)sn-l + ... ao) + f(s) =0 (61)

where f(s) is a polynominal in s of degree n-1 determined by the off-diagonal

elements of the bottom row. Then

mtl n
s - (tr A + ah+l, n+l) s+ ...+ f(s)=0 (71)

from which it is seen that
ntl

]
A= ) Al (81)
i=1 _
?
where the Ai are the eigenvalues of A'. Now since (2i) can be easily

verified for r=2, it must be valid for all n.

Returning to the proof-of (1i) it is noted that (3i) holds if and only
if there are complex vectors ut # 0 such that

Y A ot | - (91)

Repeated pre-multiplication of (9i) by A gives

A? u; - Ai A = Ai ut ' (101)

A2 u; = K? ot

However, this implies that XT ,(1=1, 2, ... n)are the eigenvaluss of A",
Then using (2i) results in
Tr A" 12 Al = o (111)
=°

as desired,
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APPENDIX C
LINEAR CANONICAL FORMS FOR
CONTROLLABLE SYSTEMS
by
R. W. Bass and . Gura
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INTRODUCTION

In this paper four different coordinatle systems are studied,
namely i

state variables (x)

phase coordinates (9),

Lur'e coordinates (£).

generalized Lur'e coordinates (o).

There are six non-singular linear transformations, name!l
f=]

-

¢ =T6 ,

n

x
"

D¢ = DTH ,
£ = V™ = V¥D¢ = V*DTe ,

which relate the four coordinate systems.

In order to pass freely among these coordinate systems. includ-
ing the inverse transformations, a total of twelve matrices must be
utilized.

In particular numerical applications wherein the dime=nsisn n of
the state space is large, it is desirabie to avoid either inversion of
n X n matrices, or complete spectral analyses of (non-symmeiric)
matrices. The present aralysis achieves this by explicit presentation
in ""closed form"' of rational expressions for the elements of all twelve =~ °
matrices.

It has been shown by Lur'e [1], Letov [2], and many others, that

use of Lur'e coordinates facilitates explicit construction of Liapunov

functions [3], hence facilitates study of stability of equilibrium in
dynamical systems.

More recently it has been shown by Bass, Lewis and Mendelson
[4], [5]. by Wonham and Johnsor [6], [7], [8], by Kalman [2]. and by

Bass and Gura [10] that use of phase coordinates facilitates the appli-

cation of frequency-domain concepts to various problems of system

stabilization and optimization stated in time-domain concepts.




In this paper a system of generalized Lur'e coordinates is

defined. Unlike the Lur'e coordinates, these variables are well-
defined regardless of whether or not the system's "open-loop poles”
(eigenvalues, characteristic roots) aure distinct. Although many
realistic engineering problems do nut have multiple roots, many highly
illuminating examples of modern Control Theory can be derived readily
when multiple roots are permitted. Thereiore the complete generality
of applicability of this last-mentioned coordinate systemn is important
for both exposition and research on advanced control problems.

The system to be studied is of the type
X :_Ax + v
where
x = Ax

governs the evolution in time of the uncontrolled system, where "a”

is the actuator vector, and where the scalar v ° .,;o(x) denotes the

feedback control law. (In this paper the functional nature of Yg is
irrelevant, hence unspecified.)

The characteristic polvnomial of the uncontrolled system is
defined by -

n
Als) = dgt(sI - A) = z as'
i=0
which defines the coefficients @ al’ e, @ a = 1. Similarly,

n-1" n
matrices Sl, 52’ I Sn are defined either by

n
s.:Za‘AJ‘l' (i:1’21'°"n))
1 )

jei
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or by means of the resolvent equation

n

(sI - A) ! - Z

i=1

In numerical practice, use of the preceding definitions for the
a and Si is quite impossible for large values of n, since it would
require n! multiplications. However, an efficient recursive algorithm
stated below permits their computation in about n4 multiplications.

The given system is called controllable [9] if the system of n

simultaneous linear equations

a-b=0, Aa-b=0, --- Aaltlap

1
o

has a unique vector b # 0 for its solution. The vector b can be com-

puted by Gaussian elimination. In general, computing b represents

(l/n)Sb of the arithmetic labor required to invert an n X n matrix.
The vector b is important for several reasons. In particular,

it 13 the normal vector at x = 0 to the time-optimal switching surface

of the given control problem. In fact, it can be proved [11], [12] that

the time-optimal regulator law has the form
Y, = sgn(b-x + po(x)] ,

whex;e {p (x)/ Hx “} - 0 as "x " -~ 0; in fact for some €, > 0 there are

positive constants Hor Mg such that

l+qo
Ipo(x)lsuolxl ; n,>0, (fxf=e) .

Furthermore, if the phase variable 0 is defined by

1




Py
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then it will be shown below that the given system is equivalent to the

scalar system of nth order detined by

d .
A(d_f)el B Yo

Passage from the phase variables 01, él’ RN dJ-lOl/dtJ'l, e,
dn-lel/dtn-1 to the state variables Npe X, X is facilitated by the
result

n dl-lel

X = Z - S.a
h dtl’l 1

to be proved below.
Next, assume distinct roots, i.e. assume that the complex

Ao, N, -, X
numbers 1 Mo » A, satisly

aA)=0,  A)F0, (i 1.200,n) .
Define vectors v’ as suitably normalized eigjenvectors of A%, namely,
A*VsziV1' V'a:l, (1:1,2,"',11)

Then the Lur'e coordinates of x are given by

gi::vl’x, (i=1,2,"’,n);
it is easy to see that these variables satisfy the system

¢ = A\ i = .
§i i§i+¢o , (i=1,2, ,n) .
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Furthermore, it will be proved that return from the variables £. to
4

the X is provided by the transinrmation

i . . . .
where the vectors u are defined as suitably normalized eigen~cectors of

A, namely

The preceding definitions of the u and v are adequate in principle but
in practice are inconvenient. Another result of this paper is that the

correctly normalized u' and v' can be computed efficiently by the fol-

lowing closed form expressions:

n (X‘)J-l
ulzz i S.a , (i=1,2,---,n),
arx)| _
Y R
n : : : s
v o= Z (xi)"ls;b . (i=1.2-"".n) .
i=1

A complete summary of results, in systematic tabular form,
will be given at the end of the paper. All of these formulas are used

in the authors' theory of integrals and isochrones [11] which allows

explicit (local) solution in closed (""algebroid') form of both the time-
optimal regulator problem [12] and the bang-bang control problem

with quadratic performance index [13].
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NOTATIONAL CONVENTIONS

a. Matrices are upper case letters.

b. Vectors are lower case unsubscripted or superscripted
letters,

c. Scalars are subscripted lower case letters,

d. Exceptions to these rules are i, ]}, x,1, v, n which are usecd

as summation indices or scalars; s which is a complex

scalar; A(s) which is a polynomial in s; and t which dc¢notes

time.
e. Asterisks used as superscripts (%) cdenote matrix
transposition.
.th . . . i
£. The i column of the identity matrix is represented by e .
h. The symbol 2 denotes equality by definition.

ALGEBRAIC PRELIMINARIES

In general, the solution of the system of differential equations

X = Ax + as,’,-a (1)
. .. . At .
involves the transition matrix e, whose Laplace transform is the
. -1 . . . . )
resolvent matrix (sl - A) where I is the identity matrix and s is a
L J

scalar. It can be shown [4, 14] that this matrix is given by

(s1- 4" = 22 (2)
where
n n
Als) = det(sl - A) = Zojsj . r(s) = z sils. (3)
=0 i=1
C-6
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and the Sl’ S SR Sn and the a.e *,a_are effectively computable

5

by the recursion relations

a = 1, Sn =1 . {4a)

l 3 —-— LI Y
an‘j - = J tr (Asn‘J‘l) ’ (J - ls 27 )n) ] (4b)
Sno) = an-jl + Asn-j+l , (j=1,2,-+-,n) , (4c)

The matrices Si can be shown [4] to satisfy

S .= 2 "iAl-mj (j=1,2,-*-,n) . (4d)

The theoretical definitions (3) and (4d) cannot be used to compute the o,
and Si for large n, as they involve n! multiplications. However, the
algorithm (4b-c) requires only about n4 multiplications and has an
intrinsic self-checking feature in that (by Cayley-Hamilton) So =

The controllability criterion of Kalman [Q] is tundamental! to the
present analysis and will be assumed henceforth. For the system (1) it

can be expressed in determinantal form as
det D #0 (5a)

where

D= (a,Aa, -, A" g (5b)

Theorem 1

If the matrix L is defined implicitly by

-1 a e 2




then
L= [b,A“‘b, (A%)%b, - -, (A*)“'lb] (7)

where the vector b is given by the solution (e. g. by Gaussian elimination)

of the non-singular system of linear equations

n

D*b = e (8)

Proof. If the above hypothesis is to be identically true, it must be

shown that
[(5,2,5,2,---.s ] el = (ani s | iz1,2,--0,8  (9a)

or, equivalently, that

ey

elz (S,a,8 a-,---,sna)*(A*)i'lb , (i=1,2,-+.n) (9b)

2

is valid. In particular, the rows of (9b) can be written as

n .
a*s}k(A*)l-lb = a¥ z av (‘%:‘:)V'}*'I-lb = 51) . (1, J =1,2,-.-, n) (10)
v=)

Now replace summation over v by summation over k where k = v +1i - J»
e
and obtain

n+i-j
sy k=1
¥ ¥ -
2* D A9 s (11)
k=i

as the relationship to be established..
Consider first the case for which j 2 i. This implies that | < k < n.

Note that (8) can be written explicitly as

vy K= 1
o oA _
6kn_a (A%*) b, (k =1, 2, , n) (12)




r
‘ where E)k is the Kronecker delta. With this, the left side of {(11)
n o
H n-j+ . . .
. 5 2 ) . e mi cTO except when K = n
{ . becomes -l ak*’)-x kn The summand is zero except when kK

(which requires 1= ) in which case the sum takes the value a. = 1
Hence (11) is true for j 21,

Returning to (11) when j < i, write the left side of that equation as

n n-j+i

= wy k-1 sy k-1

a zqkﬂ._i(A Y lp 1 a z TS (13)
k=1 k=n+l

Now, by the same argument used above, the first summation in (13)

yields the value a On replacing k by m=k - j-1, the sccond sum

nt+j-i
becomes
n n+j-i
) axai-i-l z o (A%) ™y = Laxaltl-l Z o (AT, (14)
m m
m=n+1+j-i m=0

where the latter result was obtained by use of the Cayvley-Hamilton
Theorem. (A matrix satisfies its own characteristic equation } Now since

j< i, (12) can be used (with m instead of k) and the second sum equals

s

n+j-i n+j-i

i * % m+i-j-l _
-Z Im? (.A ) b= -z o’mém«l—i-j, n (15)
m=0 B m=0

N peat sy pBem PVWER aewm, fvvay PR ety sy

This has the value zero except when m+1i- j=n in which case it becomes
°an+j-i' Combining this result with that following (13), it is scen that
for j < i the left side of (11) is zero. Thus relationship (11) has been

proven and theorern must be valid.

-

.

.
3

.

S

|
l'. .
[

2




Theorem 2.

A more concise expression for the inverse of L is

(L Y =DT
where

[ a o a
1 2 n-1
%2 %3

T="Tx 28

@ 1 1 0

1 0 0

Proof. By inspection, the it‘h column of T can be written as

n

tl = Z Q. eJ-1+l
J

=i
Now by definition
DT = (Dt!, Dt?, - - -, D)

where

n

n
Dt1 = zaD eJ-l+l = z a.(A)J-Ia
J J
j=i

jei

But by (4), the definition of Si’ Dt! = Sia' Then applying (6) yields

n

DT = (L-l)* = (Sla,sza’ ceey, S a)

as desired.

°]

(1o)

(17)

(18)

(19)

(20)

(21)
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Theorem 3.

A pair of explicit expressions for the inverse of D is

n-1 -1 . -

D & (a,Aa,---,A ""a)" = TL*¥ (22a)
'l - Yt st e Hed B
D™ = (Slb,SZb, ,Snb) (22b)
Proof. Consider the matrix
B 1 Z
LT* = LT = (Lt , Lt°, -+, Lt (23)

By (18) and the definition of L,

1]

n .
Lt Z (b, A%, - - - (A¥) P 1 pla, eI-1*1
=i |

J
n -
- zajm*)]“b , (i=1,2 .0 (24)
j:i

Applying (4d) it is seen that Tt S;‘b. Thus,

. (g% . N~

LT* = (Slb,SZb, ,Snb) (25)

"l "1 e -1 ‘1 B e ‘l b
Now by Theorem 2, D™ = [(L™)*T ' |7" = TL*, or LT* = (D™ ')* so that
by (25)

-1 % £ P 2 S

D "= (sl b,SZb, ,Snb) (26)

as required.
C-11
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Theorem 4.

An explicit expression for the inverse of T is
[0 o 0 1]
0 0 1 ﬁl
Tt L : (27)
0 ! Bn-3 Bn-Z
_l {31 ﬁn-z Bn-l‘

where the B's are given by the following recursion formula

b= 1, (28a)
v-1

B, = Z @n.yB 0 (V=120 a0 (28b)
J=0 ~

Proof. The proof of this theorem consists of two parts. The first
part introduces the appropriate set of quantities (Bi)vwhich obey (28). The
second part shows that ']Z"1 is given by the matrix displayed in (27).

Part A. Define the quantities ﬁj(j =1,2,---) by the Laurent series

o o]
.
1 E
m:jzo—;alq , (ls[>maxlsil) , (29)

where the s, are the roots of A(s). Then

2. ‘31‘5_(””) (30)
j=



Replace ) by use of the definition v = j+n -1, obtaining

n @
-V
1 N z z ~
1 1+v -n
i: v-n-

(31)

Now interchange the order of swnmation by observing that 0 € n-i<v=<wo

1A

and 0 < isn imply that 0

n

20
_ -v
= 2 z °Piivonl®
v=0

i=max(n-v, 0)

vs o and max{n-v,0) 1< n. Thus

(32)

Note that the very first term on the right side of (32) is the only constant

in the series. Thus for (32) to be valid for all !s| 2 max Esij' that term

must be equal to unity and the remaining terms must all be zero.

anpo =1
n
Zaiﬁiﬂ»v-nzo' (v=1,2,---.n)
izn-v
n
.
zaiﬁi+v~n:o , (v = ntl, n+2, n+3, ),
i=0
or equivalently, ﬁo =1,
n-1 -
- Z aipi+v-n= z +n-VJ' (v=1,2,7--,n) ,
i=n-vy j=0 .
where j=i+v-n, and, similarly,
k+n-1
=k

where k = v-n,

Then

(33a)’

(33b)

(33c¢)

(34a)

(34b)



Part B. It will be shown that TT—1 = I, where T—1 is definced by

- . . .th RS O .
(27). By inspection,the j&= columnn of T is given by

1-1
) 2 Py oPrk-grl (33)
k=0
‘Then, using (18), the i-j't‘}} element of TT'l = T*T-I = (T':‘rl, L TE+D)
is
n j-1
S Z ¢ B, 5 (3¢)
1Pk 1-i+1, nek-j-1
L=1 k=0

The non-zero terms of this expression occur only whenf-i-l=z=ntk-j+1
or when{=n+k-j+i. However, i<l <nand0 =k <j-1 mustalso be
satisfied. This implies thati sn+k-j+i<n or that0 < k < J-1i. Then

(36) becomes

j-1

I -
bers Z"n-k-jnpk (37

k=0

For j=1i this reduces to unity. For j# iletv = j-1iand, using {34a),

obtain

v

S - . -
k=0

and the theorem is proven.
PHASE VARIABLES (0)

Taking the scalar product of (A*)k‘lb, (k=1,2,---,n), with the

system (1) results in

[(an 1o S5 = am*Te- ax + (an) < Nbay,

dt (39

C-14




Applying (12) gives

[<A’*)k"b- 37 (A D Sn Yo =0

Now define a new var:abie

0,=b"x (41)

where b satisfies (8). Then for x= 1, (40) becomes

do
dx _ | O
b T @G A'b'x (42)

Differentiating this expression with respect to time and using (30) for

= 2 gives

d“s .
le A*b.%iz (A" - (43)
dt t _

Continuing in this manner obta:n

di-lel el
—-—i—T:(A)-b-x (i=1,2,++,n) (44a)
dt "
and
n
d e
=A%) bx+ Y (44b)
dt
Then
o de, o
ZGJIT:[OOI+01A +~--+an(A)]b-x+go. (45)

j=0




g2
43

Now by the Cayley-Hamilton Theorem A{A”) = 0, whence

n
z — = A(d/3)9, = v (46)
i=0 °] dtJ bo

Upon defining the state variables 0 1’ 92, cee, Bn by

e-:_—-—" (i:I,Z,"‘,n), (47)

th . . ,
the n™ order scalar differential equation (46) can be expressed as the

first order matrix system

= CO + el Yy (48a)
where
re1 [0 1 0 0 0 ]
0 0 1 0 0
%,
e=|.1, c= 1. ; . . ) (48b)
0 0 0 0 .. 0 1
n
%% "9 ey T mep o tan g

To find the transformation matrix between the x and the 8 coordi-

nates, note that Equation (44a) can be expressed as

*

= (A" 1y (i=1,2---,n), (49a)

C-16




or

0-[b, A%, -+, (A" b] x= L' x (49b)

Note that applying this directly to (1) and comparing the result with (48)

shows that

C =LAy ! (50)

By Theorems 1 and 2 the inverse of (49b) can be established directly.

Thus
n
- L")y 'e=1(5.a,5.2,---,S8 a)0 = :E 0.5 (51a)
X = = (5,a,8,2, .S )8 = 5.2 a
i1
or

x= DT®

"GENERALIZED" LUR'E VARIABLES (¢)

(The reason for this name will become clear in a later section.)

Relations Between x and ¢

Let
¢ 2 p i (52)
Then (1) becomes
¢= (D" !aD)® + D" lay (53)
C-17




Consider now the matrix product

0 0 0 .. e 0 -y

1 0 0 ¢ -,

0 1 0 0 -az
DC” = (a, Aa, -+, A" 1a)

0 0 0 1 -a
X n-1]
_ n-1
2 1 -
= (Aa, A%a, -+, - aAa) . (54)

1i=0

Applying the Cayley-Hamilton Theorcem, the last column of {54) becomues

n
. A a whence

C-18

DC* = AD (55a)
or
p'ap= c* | (55b)
Note also that, by Theorem 3,
pla- (7D, S;_b, . s’r‘:b)""'; : (56a)
or, using Equation (10),
a-s;b] [ 1] |
a-SZb 0
‘D'.la = B I (56b)
_a Snb‘ LO_




Lo

Thus (53) can be expressed as
; “ 1,
é$=Cd+e Ys (57)

The forward and reverse transformation relations can be expressced

explicitly as foilows. By (52) and Theorem 3,

-1 2 A % %%
¢ =D 'x=TL x=(S,b,S,b,-++,S"b) x , (58a)
1 2 n
or
. . .
¢i=(Sib)~x, (t=1,2,--+,n) . (58b)
Also
n
x = Dé = (a, Aa, -+, A" la)d> = z éiAl- Ly (59)
; ' i=1]
Relations Between 6 and ¢
Previously [(58a) and (51b)] it has been established that
4=D'x, x=DTe .  (60)
Consequently,
¢ = TO , (61)

In particular, using (18)

n n n
2 . .—-
cb:(tl,t,"',tn)e: Ztlei: zzaJeJ H'lei, (62)
i= 1 i= 1 j=i

C-19
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and so
n n
= - oV = = ¢ .
¢v = ¢ e Z Zajeiév,j-i‘?l , {v 1, 2, , n) (63)
i=1 j=i
Non-zero terms occur in (63) only whenv=j-i+1 or when j=v+i-1,
Combining this with the constraints 1 si<nandi!<j=<n, jcan be
replaced by v+i-lonlyif Isisn-v + 1. Then
n-v+1
®, = Z % 4i-19 (64)
i=1
whence, setting £ = v + i -1
n
&= Y ey b=Lzoem, (653)
L=v
@n= 6l » {o35b)
The inverse transformation can be established in a similar
manner. Employing (35), -
n n i-1
_ o=l v _ i, Y v 2 n+k-i+1 v
o, =T ¢e-zf¢le-z B .
1= 1 i=1 k=0
n i-1
N Z 2 Pi®i8,, nk-it1 (66)
i=1 k=0
This expression can be simplified to
n
Oy = ZE By_n+i-1%i (67)
i=n-v+1

C-20
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by considerations similar to those used after {63). Finally, if summation

over i is replaced by summation over £ =v -n+1i- 1, there results

Z ‘31¢l+n—v+1 R (v=12,+--,n), (68a)

6. =¢ (68b)

LUR'E COORDINATES (£)

Relations Between £ and &

By inspection of Equations (54) and (57), the system (1) is precisely

equivalent to

&.l = -e bty . (69a)
$p= 4 - @, (69b)
B R R A (69<)

Now consider the ¢ coordinates for a system with distinct complex
eigenvalues )‘i' {i=1, 2, +++,n). Multiply the jtl1 equation in (69) by )\g-l

and sum to obtain

-1
szI zx¢ Za)\']tb + Y i=1,2-"+,n) (70)
1J Jln ? 9 ? H
j=1 =0
Now since
n-1
A(N) =0, -Za.xizax“,
i ji n
j=0

Cc-21




and (70) reduces to

n n
i j
1 1 -
Define
n
£ & zix{4¢j (72)
1
=1

-th .
as the i~ component of an n-vector §. Then (71) becomes

§i=\i§i+¢f0. (i=1,2,""",n) (73a)
or, in vector form,
€= At + uo;’o (73b)

where

k=3
eln e - o M), u_ = (1, 1,°-+, 1) (73c¢)

A= (x 2¢ 77 n o

1
The transformation (72) between £ and & can be expressed in

matrix form by the equation

£=2% (74)

where Z = (zl, zz, SR IN zn) and where

[ 1]
A
£
1 n
zl.-. . = z (xi)k-l k , (i=1,2, , n) (75)
k=1
)\n-l
S
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To find (2*)"1 consider the following. The identity
Cz = \N.z2° , (i=1,2,---,n) (706)

can be verified by inspection of {(48b). Now by (55b), Theoremr 3, and

(50),

t-lc*t = T o lapT = LA hr - ¢ (77)
Hence
T‘IC""TZi = Xizi (78)
or
w1 i
C*Tz = XiTz . (79)
If the X\;, (i=1,2,+-+,n), are distinct, then A= [d(A(s))/ds]N #0
1
and so
'I.'zi 'I'zi
L] -
c &) N a7\ (80)
Now define the vectors
wh = rzi/a'(xi) , (i=1,2 "+ n). (81a)
Then from (80),
Crwlz=aaw',  (i=1,2-0-,0). (81b)
Using (76) and (81) it is clear that
wJ-Czl=Xin-zl, (i,j= 1,2,---,n) , (82a)
and
z‘-c*wJ=sz’-wJ, (i,j=1,2,-++,n) . (8 2b)

Cc-23




Hence
Nz wl) = xj(zl-wj (83)
which implies that
zl'wj=0 , i4j. (84)
For i = j, note that
. 1
R S . Tz (85)
A (N)
By (75) and (18)
n n . n
ZI'TZI - z (Ki)k-lzl'tk - Z (Xl)k-l zal ZI .ez ‘k*l . (86)
. k=1 = =
Hence
-1 -1
P i "‘i)k N -k _
,‘.W=z—,—;-‘__‘al>\1 Z z - 37)
k-.-xA(i)l=k kllk’\()

To reverse the order of summation in the last expression note that
l<ks<fsnimplies 1s £ snand 1sk<{. Thus (87) becomes,
for (i=1,2,---,n),

am D oga, ()t |

n {
g Z o —lgl———_—l"l)‘i) =1 . (88)

Combining (84) and (88), there results wlez! = éij or equivalently

|

wl w? oo whE ), 2%, 2 =1, (89)
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If w 8 (wl,v'vz, s ,wn), then (89) becomes
w= (2! (90)
Hence (74) implies
o= WE , (91)
To express this relationship more explicitly note that, as in (86),
n n i
Tz
= WE = Z b =
g wE & 00 £
i=1 =1
k- .
i i o i Lokl )
= a, e L, (92
A\ ) L i .
i=1l k=1 i L=k
or
n n (x )k I n
¢j=z z le).l k+1 (93)
i=1l k=1 1 L=k

The summations are trivial except when £ = j+ k - 1. Combining this

with the constraints k< f < n, 1<k=<n, (93) reduces to

n n-'+1(R )k-l
= —A—a
J z z 200 % ko154 (94)
i=1 k=1 b}
or, setting v = jtk-1
n n v=)
(x;)
- i . '
G 2|2 ao | U hE o2
i=lv=) i




Relations Between £ and 0

By (91) and (61) it is obvious that

p=T lwt (96)
In particular, from (92)
n . n n k-1
i {\.)
Kk
e:Z Z_ ¢ - ik (97)
~ a'n) ! z z AM(N) é‘
i=1 i izl k=1 1
or
S MH& (98)
e.=z———-., G=1,2,""*,n) . 98
iT 2L A )
i=1 i

Similarly, the inverse transformaticn is easily established from (74)
and (61) to be

£=2%To . (99)
Hence, proceeding as usual,
n n n
- i Ja _ i k-j+l
§1 Zz tej—z Zakejz e
j=1 j=1 k=j
n n
= 2 Zakxk‘l 0 . (i=1,2-",n) (100)
J=1lk=j
C-26




Relations Between £ and x

—— AN
4

The basic relationship between § and x can be found immediately

by applying (58b) to (72). Thus
n
- AED S
g, = in 57 x (101)
=1

Now define V a (vl, VZ, s, vn), where

[ cns T o B o S ]

n
vz ng'lhsj.‘b . (i=1,2,-,n) (102)
[ a
. Then
l : §i=vi-x,.. (i=1,2,"++,n) (103a)
or
£ =V¥x (103b)

£ = Z*TL*x , (104)
so that

V* = Z¥*TL* (105)
must be valid. By Theorem 2 and (90)

v = wnlrlze) ! - pw (106)

fﬂl— omm— 'ﬁn r_ﬂ ey PRSSY pm— .

r—
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For convenience define

Ut (ul.uz."'.un) = DW

where, as in (92),

n j-1 n n j-1
(x.) (\.)
ul=Dw1=z - ZakAkJa:z L S.a
s 4 0 N0 Rl ~ar(n)
Jj=1 i k=) J= 1
Then
n
x = DW§ = U§ = Zulgl
i=1

Extensions and Generalizations

The identity

n n
; A(n) - AR} = (n-p) Z ot z apd
i=1 =i}

(107)

(108)

(109)

can easily be verified by equating coefficients of like powers of n and p

where these quantities obey the commutative and distributive laws of

algebra. With no loss of generality, n can be identified with sl and

with the matrix A, Then

n n
AS)I-A(A) = (sI-A) D, si] z oAl
i=1 =i

and, by the Cayley-Hamilton Theorem and the definition of I (s),

A(s)L = (sI-A)I (s)

C-28
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Indeed, (2) can be found directly from this relationship whenever
(sI--A)-1 exists. By multiplying (111) on the right by the vector a it is

also clear that
As)a = s[(s)a-AT(s)a (112)

Before proceeding, define the vector u(s) by

uls) 2 I“(S)«':l (113)
A(s)
where
R A(s) for A(s) # 0
As) =
A'(xi) for A(s) =a(\) =0 and xi;é ,\j , (L,j=1,2,---,n).
Explicitly,
n n j n k i-1
uls) = Z E 2 akAk'Ja N N (114)
J=1 =J A(s) k=1 j=1 A(s) = v

Now let L = k - j + 1 and replace j to obtain

n k
k-1
u(s) = z z a s\ Al-la (L15)

Taking the scalar product of u(s) with the vector b and applying (12) it is

clear that

1
u(s)-b = = — (116)
kzu 1 <s) °tn
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Returning to (112), note that u(s) satisiies
Als)a + AU(s) = siu(s) , Als) # 0 (l117a)
where

As) & A(s)uls)

T {s)a (117b)

and so, dividing by &' (\ i) and setting s = A, there results

Au(\i)‘:)\lu()\i) s A(Xi)f—o , \iij(i,j:l’z....,n)
(117¢)
uh ) b= o (117d)
i a’(x ) |

In the latter case, the u(Xi) reduce exactly to the u' defined in (107).

- Thus the columns of U are merely the eigenvectors of A, normalized

according to (117d). Consider (109) again with n as sl and A™ as p.

As before, it can be shown that

A(s)I = sT*(s) - A" I'(s) (118a)
or
A(3)b + A*IT"'* (s)b = sI" ™ (s) (118b)
Defining
v(s) & I'™* (s)b (119a)
or, equivalently,
j=le
v(s) = i s Sjb . (119b)
S
C-30
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Proceeding in a manner analogous to that followed in Equations (114) -

(116), it is clear that
v(s).a=1 (120)
Also, by (118b)
Als)b + A* v(s) = sv(s) (121)

is always satisfied. When A(s) = A(\i) =0, (i=1, 2,.- .., n), (121)

becomes

Arv(X ) = N v(h) (i=1,2,---,0) , (122a)

V(Xi)‘a=l (i=1,2,---,n) . {122b)

By comparing {119b) and (122) .with (102), it is obvious that v(\i) is
identical to vl, (i=1,2,-.-,n), and that these vectors are the eigen-
vectors of A* normalized according to (122b).

Note that (103a) can now be generalized, using (119'0) and (58b), to

n

&(s) = v(s)-x = Z site, (123)

i=1

Then, taking the scalar product of v(s) with the system (1) and applying

"(120) and (121) it is found that

v(s) - x

v(s) . (Ax) + v(s)- a\po

x*A*¥v(s) + b, (124)

x*(sv(s) - A(s)b) + Yo

C-31




Now using (123) and (49a), the above becomes

E(s) = s€(s) - Als)e) + ¥ _ , 6, =b.-x=¢ (125)

This can be considered a generalization of the Lur'e canonical form.

In fact, when the eigenvalues of A are distinct,

g =6A) , (i=1,2,---,n), (126)

and, setting s = Xi in (125), the Lur'e form (73a) is recovered. On the
other hand, whether or not the \.1 are distinct, the identity (125), which
in form is highly reminiscent of the Lur'e form, can be regarded as
the collection of n differential equations obtained by equating like powers
of s on the right and leit hand sides. However, on inserting (123) into
(125) and comparing coefficients, the canonical form (€9) (or, equiva-
lently (57)) is recovered immediately. It is for this reason that the
form (57), which is valid whether or not the \i are distinct, was called
the '""Generalized Lur'e Canonical Form. "

In a subsequent paper [11], an explicit, analytic, non-singular,

nonlinear transformation

o= g(¢) = g(TL™x) , (127)

will be defined which transforms the Generalized Lur'e Form (57), for

constant q,o, into the simplest possible canonical form, namely

o= Lpo e . (l 28)
The use of (57) in the form (125), which is valid whether or not the )‘i

are distinct, is the key to a very direct proof of the important result
(128).
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SUMMARY

Major Definitions and Identities

For the system x = Ax + ay ., in general:

(sI - A~}

Als)

I'(s)

"

H

1}

I'(s)

AO(s)

det (sl - A) = s™ o+ an

i=1

n

Z%A’ e s
jei
(a,Aa,---, A" la) |
n

e,

TL* = (S”l‘b,S*b, cee,

2

(tlotzn""tn) ’

C-33

sn-l+ ya =0,
-1 o
0,1,-+-+,n), S =0,
o
det D # 0 ,
),
S*b)* ,
n

n

. .

' = 2"1 I a2,
j=i
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L*A(L*)"

1

1

1]

v-1
ﬂv = z aj+n-v_) ' (v
j=0
( 1 n
- e ,e -a_ e,
o 1
n n-1
-a. e , ", e
j-1
C .,
C*

D "AD

For n roots )\i of A(s) = 0 distinct:

(S

‘(z lzzn'. nzn) »
(wl,wz.- L W), w' =
(z*)

= (vl v8 v,

= (u',u%, -, 0",

= (V* , D*V =z |,

=\,

n
1 - z (Ki)k‘l ek
k=1

Tz'/a'(\)

j=1

n

=1

l-b= I/A'()\i) ,
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A(X)

j-
()

2%

»

lgxy,
j

(H’l

Z k -j+l
k ’
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B. Coordinate Transformations in Vector-Matrix Form
3
x e b (\i # XJ.)
x X = 8 = L*¥x ¢ = TL*x ¢ = V*¥x
] x = DTO 8 =29 ® = T8 £ =2%Te
¢ x = o=T lo &= 0 £ = 2%
£ . S P Cowe _
(A, #1) | x=Dwe o =T lwg .= We £ =¢
1)
C. Coordinate Transformations in Vector-Scalar Form
§
x 2] ] (Ri# \J)
x x, = x, 8=(a*y ly.x 4, = (STb)-x gi:vi-x
n n n n
- _ _ ~ k
) x= ) 0Sa 0, =8, .= Z",‘Oj-iu g, = Z‘Z«kxi]%
i=1 j=i j=1lk=j
n i-1 n
i-1 . _ - j-1
¢ x= z "xAI 2 i* 2 P%5en-in %Y & = Z NCY
i=] i=0 =1
¢ n ) n (\ )i—l n n
- i _ ] v- =
(A £1) x= ) gu 0= rarwi i 2 a2 S
] i=1 j=1 J j=1 v=i
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Canonical Forms in Vector-Matrix Notation

x:Ax+a¢Jo.
A _ n
6 =C0+e Yo
. " 1
®=C* +ew ,
Q
é:Ag‘f'uo\";o , (uO:eIJ,- ez+...+en) .

Canonical Forms in Vector-Scalar Notation

A(cl/d'c)e1 = s.po R 91 = ¢n ;
n
g , -1
E(s) = s&(s) - 4 - als)e, »  Efs) = z s! ¢
‘ i=}
gi = Xigi *q.lo ’ gl = g(\i) '
for \.1 all distinct, (i=1,2, --,n) .
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SUMMARY

In this paper the problem of finding a suboptimal control for a
linear system is solved. The term suboptimal is used to indicate that
the control chosen does not minimize the performance index undeT con-
sideration but does provide upper and lower bounds on the performance

index. The system under consideration is described by

% = Ax + af ,
where
X = n X! state vector
A = n X n plant matrix
a=nXxl vectox.'

scalar control to be chosen.

g

The performance index is

‘@
1\, 1.2
D = /:[ (E)vzv(x) +7g dt

v=l
where
442‘-’ (x) = positive definite homogeneous multinomial forms
of degree 2v .
T = stopping time (taken as free in this problem).
Then it will be shown that £ = -a-grad V is a suboptimal control
where
<D
V = (—l‘)¢ (X)
2v/ 2
v=l
and
¢2v (x) = positive homogeneous multinomial forms of

degree 2v to be chosen.
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Further it will be shown that the control laws

-p{a-grad V)
and .
-K sat (%a - grad V>

lead to stable closed loop systems for K21 and p 2 1/2.

INTRODUCTION

In optimal control problems it is often desired to keep certain
combinations of the state variables below allowable bounds. This prob-
lem can be handled by using the combination of state variables raised to
a large even power. For example, if it is desired to keep Xy below K, a
performance index of the form fo [(xi/K)zv'— other terms]dt may be
used.

Motivation for this approach lies in the fact that (xi/K')ZV will be
small so long as xi<K and will be large whenever x> K. Thus, bounding
this term tends to keep xl(t) below K for t in the interval [0, T]. As a
more general problem one may wish to weight many state variables
raised to arbitrarily high exponents. This can be aécomplished by

introducing a performance index,

1,2
® = v+ =£°]dt
/0[+2g

where @

v = 2 ()4, 00,
v=l

where ¢Zv is a homogeneous positive definite 21/1:—}l order form, and
where § is the control to be chosen,
The conditions on ¥ may also be stated by requiring 4‘2v> 0 for

x#0 and q;ZV(p)c) = }szq’xzv(x) for all real y.




The quadratic cost of control will allow derivation of upper and
lower bounds on the value of the performance index. In other words,
the choice of a quadratic cost of control allows one to solve the prob-
lem. Note also that {for each fixed xo) this corresponds to a quadratic
bound on control of the form ,v’:gzdz = K for some K.

This could be an actual constraint on the system, but the present
paper will not be concerned with this matter. Suffice it to say that the
quadratic constraint on control can be introduced into the problem by
means of Lagrange multipliers, although the dependence of the multi-
plier on x° is not a simple problem.

In the devélopment which follows it will be shown how to pick a
suboptimal control § = ’g\ Corresponding to §, there are two numbers
@ and a, depending on the control law chosen and the initial state of the ,
system, which bound @ = min® from above and below. That is,

g

@ £ mind = @.
3
Further, it will be shown that if the control laws pf of Ksat{[K¢/p] with
K,p 2 1/2 are mechanized, the closed loop system is stable in a known
neighborhood of the origin.
Associated with actually finding this control is the problem of

solving the equatiori

~

Ax-grad ¢, (x) = -4, (x)

2v

for ¢2v (x), where Aisannxn stability matrix, ¢2v(x) is a given

positive-definite homogeneous multinomial form, and ¢ v (x) is the

2
desired positive-definite homogeneous multinomial form. In the
REMARKS section a simple procedure for solving this system of

equations is presented.
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PRINCIPAL RESULTS

Consider the constant coefficient system of first order differential

equations
x = Ax + af (1)

where

x is a state variable (an n-vector),
A is an n X n matrix,

a is an n X | matrix (n-vector), and
€ is the control to be chosen,

Let the problem be to minimize, or at least approximately mini-

mize the performance index

1,2y, .
subject to (1) and the initial condition x(0) = xo. Choose as a contr_él
law
§ = po, (p 21/2) (3a)
o = -a-grad V.,
Further, assume that
-]
1
Ve D e, (4
v=1l

where ¢2v(x) >0, x#0 and thV(x) = szcbzv(x). The condition which
¢Zv(x) must satisfy in order that V qualify as a Liapunov function for (1)
are given below. In the case where p =1, upper and lower bounds on
(2) are obtained.

Begin by defining V as in (4). Therefore

vV = (Ax + af) - grad(x)V (5a)
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and

o] o o}
Z A gradc;)2 (x) + [ gractb (\()]F> (5b)
v=1l . v=1
Using (3) this becomes

@ ® 2

V = x- (—-—l—> A* rad ¢, (x) - —1— a-grad ¢, (x) (5¢)

- 2v g "2v P Zv g 2v

v=l v=l

Now consider each term in (5c) separately; call these and

respectively. First consider

2
-]
= -9[2(51;)a-grad (bzv(x)} = -0'2- (p-l)rr2 (6a)
v=l
. 2 o 2
= [ a gradcb (x)} - (p-l)[z<l)a grad 62 (x)] (6b)
V=1 v=l

1</ 2o ¢
°z[ (25)2 - grad ‘”?.v(x’] TEL g’ad‘”z""] *
v=

-%q-z_%[a- grad ¢Z (X:][ i a grad S5 (x)]

v=2

2 .
a-grad ¢, (x)] (6c)

-(p-l)[i

v=1

In what follows certain relationships between the q;zv's and the 4;2

are desired.
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Let

'

Y,(x) = x.Cx, C = C*>0T. (7a)

2!

Then there exists a matrix B with B = B > 0 such that

AB + BA - Baa™B = -C. (8)

Further, Liapunov [1,2] has shown that for every stability matrix,
G,and every homogeneous positive definite thll order form, V(x), there
exists a unique homogeneous positive definite Zv@ order form T(x)

such that

Gx-grad T(x) = - V(x). (9

In the work below, for v=2,3,°°, choose

2v
T ¢ZV'. -
Then (9) becomes
Ax.grad ¢2V(X) = -‘#Zv(x). (v=2,3,:--"). (10)

f Note that C need only be positive semi-definite if the system is com-
pletely observable with respect to H where H is a p X n matrix such
that C=H H. Here p is the rank of C. See Reference 3 for further
details of this.




..

Returning to (5¢) and {6c) it is seen that V may be written as

2 = "
. l 3z 1 ) o2
- s ) - . c —_l s A -
vV = +2x Agrad d:z(x) g[a grad 92(:\] + \Zv)‘\ grad ¢2v(,\)+
v=2 -
pe]
;[ -grad ¢, ][ a grad o, (x)} (11)
v=2
® ' 2 © 2
1 (1 12 1 )
-2-{ (E)a- grad dpzv(x)] -0 - (p - l)[ z(—z—;>a-grad bzv(x)
v=2 v=2 :

Using ¢2(x) = x- Bx, the first two terms in (11) may be written as
sx-[A"B + BA - Baa*Blx. - (12)

However, by (8) there exists a positive definite C such that

-] 3
-C = A'B+BA -Baa"B. Again, using 5,(x) = x. Bx one may simplify
the third and fourth expressions in (11) by noting grad ¢, = 2Bx. Then

2
these expressions become

2 Ax grad ¢ {x) - -—[a grad <b ][i

8

- grad bzv(x)] =

v=2 v=2 (13a)
@D l "

z (~Z—J>[Ax -aa Bx]:grad &5 (x) . (13b)

v=2

Letting A = A-aa*B, (13b) becomes
< 1
(?V—)Ax - grad cbzv (x). {13c)
v=2



Now assume the ¢)2v 's have been chosen as in (10) so as to satisfy the

equations

Ax.grad ¢, (x) = -y, (x), (v=2,3,""). (14

Then (1 3¢c) becomes
’Z('il?«')‘*‘zv(x)' (13)
v=2

Returning to (11}, collecting the last two expressions by means of

(3b) and (4), and using (15) and 4,:2: x - Cx there results

. 1 1 1 1)y 2
D YIX IR b YT RR AR TE
v=]l . v=2
Note that if (14) can be satisfied for positive definite forms t.fJZv(x'), A%

must be a suitable Liapunov function. Furthermore, (1) is stable for
all p21/2. Hence (3) is a stable control law.
Consider the case for whichp =1. Then £ = ¢ and the coefficient

of §2 in (16) becomes -1/2. Integrating V from t=0 to t= o yields

B} @O

o) = [} 300+ 5 S Gh)asrsa oy, | hetle 0
. v=2 4

v=1

where V(x(co)) = 0 because of the stability of the system:.
Now by the theory of minimization of positive definite quadratic
forms in the state variables with quadratic cost of control [3] it is

known that for arbitrary §
-]
l1_o o 1 1,2
-zx.Bx < é[E\PZ(X) +-2-§ ]dt. (18)

However, because of the positive definiteness of the upzv(x) it is also

clear that
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1 1,2 )y L 12
j(; [—Z'\PZ(X) + 'zg ]dt < /(; Z (2‘,)‘?“2‘/(3\) ‘ -2-§ ]dt
Lv=1
Cl e 1,2, 1] <
5_/(; Z(-Z-;-)QJZV(X) +2-§ E[Z a- gradtb (‘()] dt
v=l v=2
= 1
= V(x°) = 2 (E;)ézv(xo). (19)
v=l
In conclusion, using (18) and (19) yields
1 roo1 .2 <
o o <°
-Z-X - Bx Sj(; [‘P+'Z§ ]dt < -2"- z ¢2V ). (20)

Thus the preceding constructions have bounded the given performance

index from above and below.

Note that if the original matrix A corresponds to a suitable
asymptotically stable system, the process of stabilizing the system by
linear feedback may be omitted. An upper and lower bound on the per-

formance index then is

0 sZ[\I/Jr %gz]dt < z lv).va . (21)

8

Note also that the result of Rekasius [4] is a very special case of

(20), namely, that in which

¢2VE 0, (v=23,4,-°").
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As regards the disadvantages of this technique, note that the

number of terms in ¢2v for a chosen ¢2v may be as large as

nn+1)+-- (n+ 2v -1)

22
(2v)! (22)

N

For a fifth order system with v = 2 this number N = 70,

This implies that it might be necessary to invert a 70 X 70 matrix
for the example given. The authors have found a way to reduce the
problem of inversion of this matrix to that of the determination of the
eigenfunctions of the " matrix, The background for this is presented
in the remarks section at the end of this appendix.

In many control problems the control law which can actually be
mechanized is K sat [po’(x)/K] and not o(x); It is therefore desirable to
determine the region for which this control law is stable. Consider
again (1) with

sgn[e], |6]=1;

£ = Ksat(%o') , sat[e] = (23a)
e, |[e]=t,
¢ = -a-gradV, ‘ (23b)
Vs Z(ZLV)'¢ZV(X)' (23<)
v=1l

Then following the same lines as when it is shown that po yields

stable control there may be obtained for V the expression

R DA
v=2

© . @
1 1
+ —2-0'2 - {Ksat [—{2— (73)3' grad ¢2v (x)] [ (?lg)a - grad ¢2v (x)J (24)
v

v=1 =1




e veny

Consider two cases (i) and (ii). For (i) let

@

) A, )
r (2v>a grad ézv(,\) <1
v=1
and for (ii) let
@
1 ,
% z (Z—v->a-grad ézv(x) = 1.
v=l
Then for (i)
1< /1 z2 |
V = -‘I’——z-[z <~2-;)a-grad ézv(x)] + ?"2' poz, {25)
v=2

since
. D
T = (L)a- rad &, (x)
55 g 5y (X
v=l

In this case V is negative definite when p 2 1/2. For (ii),

2 2
v 1 1 . 12 .
V = —\p--z[ Z(E)a-grad oZV(X)] +3d -Kla] (26)
v=2 '
and it is certain that V is negative definte. when
1
K2 -2- , 0" R
which can be written more explicitly as
2K 2 Z ()a-grad ¢, (x) (27)
v=l

D-11
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This inequality determines the domain in the state space for which
this closed loop system will be asymptotically stable. In actual applica-
tion of (22) it may be desirable to obtain a somewhat smaller but more

easily determined region.

CONCLUSIONS

A method has been developed for determining upper and lower
bounds on a specific class of performance indices. The integrand of
each index in this class consists of an infinite sum of positive definite
2vE order forms.

A control was found for which corresponding bounds on the per-
formance index may be computed. Also, the stability of the closed
loop system was studied in detail when the chosen control varied cither
by letting it saturate or by multipling it by a constant.

‘The performance index chosen has direct application to problems
where it is desired to keep certain combinations of the state variables

within prespecified allowable bounds.

REMARKS

Presented here are some facts concerning ZvE order forms.
Referring to (10), construction of a sub-optimal control depends on

solving the equation

Ax.grad ¢2v (x) = -¢2v(x) (28)
for ¢2v(x). This relation actually represents

nn+l).--(n+2v -1)
(2v)!

N =

linear equations in N unknown. The unknowns are the coefficients of the
different terms in the ZVE}—1 order form ¢2V(x). Thus (27) may be re-

presented by
ab = ¢

D-12



o L saamnd n—— Fonnn vy,
’

[

P

-

mmq‘

'

where

b1 c1
b,

b=| - |, =] |, (29)
by N

and @ is an N X N matrix. The bi’s represent coefficients in the un-
known ¢2v(x) and the Ci's represent the knowns in ~p2v(x). In order to
solve for b it is necessary to effectively invert &, This could be
accomplished by standard techniques. That is, just write out the
relationships involved and solve for the b.l's. This however would re-
quire a considerable amount of algebra even for simple problems. For
example, if n = 5 and 2v = 4, then N = 70.

As an alternative one might find the N eigenvectors ¢f @ and
expand C along these eigenvectors; the known properties of eigenfunction
expansions could then be exploited.

The previous statements may be developed algebraically as

follows.
Let dk be such that
a.dk = p.kdk H
further let
N
c = v, d
= Kk
D-13
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and assume
N
b = Z T.d
= k k

Then assuming uniqueness one has

The effectiveness of this method requires obtaining d, and He

k
which in turn requires finding the eigenfunctions of positive definite
homogenous forms. Fortunately this has already been worked out.
Malkin [2] shows that the eigenvalues of A are given by

= mN\ +eeot mnxn where the )\i are the eigenvalues and of A the m,

1

are restricted by

n
zmi= 2v  and mizo, (i=1,2,--+n).
=1
Also the dk are given by products of linear forms raised to the permis-

sible values of the m.. The coefficients of the terms in the linear

. : - %
forms are given by the eigenvectors of A .

A simple example of the pt_'eceging statements will illustrate this
technique of inverting 4. |
Let A = (_g _;); then the eigenvalues of A* are -2, -1; and
the corresponding eigenvectors are (1) and (f) Now let it be desired

to solve the equation A. grad ¢4(x) = - ¢4(x) and let \',14(x) = (x1 +x2)4.

D-14
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Then the dk's and pk’s are given by

4
dl - (xl+x2) ’ p'l - -8 - (-2)'4+(-l)(0) »
d. = (x, +x.)2(2x, +x.) - -7
2 R L b U LI o = ’
_ 2 Y- _
d3 = (x1+x2) (2x1+x2) , by = -6,
_ 3 _
d4 = (x1+x2)(2x1+x2) . By = -5,
d. = (2x, +x )4 = -4
5 S L M3 .

Solving for the coefficients in the eigenexpansion of ¢»4(x) yields

1 4
$® (x) = =(x, +x,) .
4( 8( 1 72
A word here is in order concerning the technique for expanding u4(x)
in eigenfunctions. Again an exampie is a convenient manner for illus-

trating this. Let

4

2 2
¢4(x) = xlx2+x2

- and, let the eigenfunctions be the same as in the previous example. Then

it is only necessary to write X and X, in terms of the linear forms

(xl +x2) and (le +x2). The proper expansions are

x; = (2x1+x2) - (x1+xz) , X, = Z(x1 +x2) - (2x1 +x2) .

Let

D-15



Then

b0 = (BP0 -p P+ (2a-pt .

f

Expanding the expressions in o, f and noting that

dl=a, d2=aﬁ

_ 252 _ 3
d3-aﬁ, d4—06
d:ﬁ4

yields the desired expansion.
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